دانلود مقاله ISI انگلیسی شماره 149135
ترجمه فارسی عنوان مقاله

تشخیص خودکار ایزوتوپهای رادیویی از یک پلتفرم هواپیما با استفاده از تجزیه و تحلیل تشخیص الگو از طیفهای گاما

عنوان انگلیسی
Automated detection of radioisotopes from an aircraft platform by pattern recognition analysis of gamma-ray spectra
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
149135 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Environmental Radioactivity, Available online 8 March 2018

ترجمه کلمات کلیدی
سنجش از دور، طیف سنج گاما، سزیم 137، کبالت 60، تشخیص الگو، تشخیص هوابرد،
کلمات کلیدی انگلیسی
Remote sensing; Gamma-ray spectroscopy; Cesium-137; Cobalt-60; Pattern recognition; Airborne detection;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص خودکار ایزوتوپهای رادیویی از یک پلتفرم هواپیما با استفاده از تجزیه و تحلیل تشخیص الگو از طیفهای گاما

چکیده انگلیسی

A generalized methodology was developed for automating the detection of radioisotopes from gamma-ray spectra collected from an aircraft platform using sodium-iodide detectors. Employing data provided by the U.S Environmental Protection Agency Airborne Spectral Photometric Environmental Collection Technology (ASPECT) program, multivariate classification models based on nonparametric linear discriminant analysis were developed for application to spectra that were preprocessed through a combination of altitude-based scaling and digital filtering. Training sets of spectra for use in building classification models were assembled from a combination of background spectra collected in the field and synthesized spectra obtained by superimposing laboratory-collected spectra of target radioisotopes onto field backgrounds. This approach eliminated the need for field experimentation with radioactive sources for use in building classification models. Through a bi-Gaussian modeling procedure, the discriminant scores that served as the outputs from the classification models were related to associated confidence levels. This provided an easily interpreted result regarding the presence or absence of the signature of a specific radioisotope in each collected spectrum. Through the use of this approach, classifiers were built for cesium-137 (137Cs) and cobalt-60 (60Co), two radioisotopes that are of interest in airborne radiological monitoring applications. The optimized classifiers were tested with field data collected from a set of six geographically diverse sites, three of which contained either 137Cs, 60Co, or both. When the optimized classification models were applied, the overall percentages of correct classifications for spectra collected at these sites were 99.9 and 97.9% for the 60Co and 137Cs classifiers, respectively.