دانلود مقاله ISI انگلیسی شماره 149608
ترجمه فارسی عنوان مقاله

رویکرد داده ها به طراحی یکپارچه زنجیره تامین پایدار یکپارچه بسته با چندین عدم اطمینان

عنوان انگلیسی
Data-driven approaches to integrated closed-loop sustainable supply chain design under multi-uncertainties
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
149608 2018 46 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Cleaner Production, Volume 185, 1 June 2018, Pages 105-127

ترجمه کلمات کلیدی
زنجیره تامین پایدار، بهینه سازی قوی، زنجیره تامین حلقه بسته، رویکرد مبتنی بر داده ها،
کلمات کلیدی انگلیسی
sustainable supply chain; Robust optimization; Closed-loop supply chain; Data-driven approaches;
پیش نمایش مقاله
پیش نمایش مقاله  رویکرد داده ها به طراحی یکپارچه زنجیره تامین پایدار یکپارچه بسته با چندین عدم اطمینان

چکیده انگلیسی

In this paper, the problem of sustainable closed-loop supply chain (CLSC) design under multi-uncertainties is studied. To identify an efficient way to enhance environmental and operational benefits of CLSC, we use “Big Data" and propose data-driven approaches to generating robust CLSC designs that mitigate uncertainty and greenhouse gas (GHG) emissions burdens. More specifically, in addressing multi-uncertainties (i.e., buyers’ expectations, demands, and recovery uncertainties), a distributed robust optimization model (DRO) and an adaptive robust model (ARO) are developed for designing carryings and waste disposal facility locations of CLSC. Both models use historical data based on uncertain parameters for previous periods to make decisions on future stages in a robust way. Moreover, we incorporate K-L divergence into an ambiguous set of uncertain parameters to measure the value of data. The results of numerical analysis show the need to account for K-L divergence in an ambiguous set of DRO models, as GHG emission costs increase even when little K-L divergence disturbance is in place. Furthermore, from the data-driven framework, we find that government subsidies and an accurate estimation method (i.e., less K-L divergence) enhance environmental and operational benefits. Regarding model robustness levels, solutions generated from our ARO models outperform deterministic solutions not only in terms of their average objective value but also in terms of differences from ideal solutions.