دانلود مقاله ISI انگلیسی شماره 150112
ترجمه فارسی عنوان مقاله

یک الگوریتم تکاملی چند منظوره بهبود یافته بر اساس اطلاعات محیط زیست و تاریخچه

عنوان انگلیسی
An improved multi-objective evolutionary algorithm based on environmental and history information
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150112 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 222, 26 January 2017, Pages 170-182

ترجمه کلمات کلیدی
محاسبات تکاملی، بهینه سازی چند هدفه، بهره برداری و اکتشاف، الگوریتم تکاملی،
کلمات کلیدی انگلیسی
Evolutionary computation; Multi-objective optimization; Exploitation and exploration; Evolutionary algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم تکاملی چند منظوره بهبود یافته بر اساس اطلاعات محیط زیست و تاریخچه

چکیده انگلیسی

Proximity and diversity are two basic issues in multi-objective optimization problems. However, it is hard to optimize them simultaneously, especially when tackling problems with complicated Pareto fronts and Pareto sets. To make a better performance of multi-objective optimization evolutionary algorithm, the environmental information and history information are used to generate better offsprings. The conception of locality and reference front is introduced to improve the diversity. Adaptation mechanism of evolutionary operator is proposed to solve searching issue during different stages in evolutionary process. Based on these improvement, an improved multi-objective evolutionary algorithm based on environmental and history information (MOEA-EHI) is presented. The performance of our proposed method is validated based inverted generation distance (IGD) and compared with three state-of-the-art algorithms on a number of unconstrained benchmark problems. Empirical results fully demonstrate the superiority of our proposed method on complicated benchmarks.