دانلود مقاله ISI انگلیسی شماره 150125
ترجمه فارسی عنوان مقاله

مقایسه الگوریتم های تکاملی چند هدفه در سیستم مهندسی هیسپانی کانسی برای طراحی فرم محصول

عنوان انگلیسی
Comparison of multi-objective evolutionary algorithms in hybrid Kansei engineering system for product form design
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150125 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advanced Engineering Informatics, Volume 36, April 2018, Pages 31-42

ترجمه کلمات کلیدی
طراحی فرم محصول، مهندسی کانسی، الگوریتم تکاملی چند هدفه، رگرسیون بردار پشتیبانی،
کلمات کلیدی انگلیسی
Product form design; Kansei engineering; Multi-objective evolutionary algorithms; Support vector regression;
پیش نمایش مقاله
پیش نمایش مقاله  مقایسه الگوریتم های تکاملی چند هدفه در سیستم مهندسی هیسپانی کانسی برای طراحی فرم محصول

چکیده انگلیسی

Understanding the affective needs of customers is crucial to the success of product design. Hybrid Kansei engineering system (HKES) is an expert system capable of generating products in accordance with the affective responses. HKES consists of two subsystems: forward Kansei engineering system (FKES) and backward Kansei engineering system (BKES). In previous studies, HKES was based primarily on single-objective optimization, such that only one optimal design was obtained in a given simulation run. The use of multi-objective evolutionary algorithm (MOEA) in HKES was only attempted using the non-dominated sorting genetic algorithm-II (NSGA-II), such that very little work has been conducted to compare different MOEAs. In this paper, we propose an approach to HKES combining the methodologies of support vector regression (SVR) and MOEAs. In BKES, we constructed predictive models using SVR. In FKES, optimal design alternatives were generated using MOEAs. Representative designs were obtained using fuzzy c-means algorithm for clustering the Pareto front into groups. To enable comparison, we employed three typical MOEAs: NSGA-II, the Pareto envelope-based selection algorithm-II (PESA-II), and the strength Pareto evolutionary algorithm-2 (SPEA2). A case study of vase form design was provided to demonstrate the proposed approach. Our results suggest that NSGA-II has good convergence performance and hybrid performance; in contrast, SPEA2 provides the strong diversity required by designers. The proposed HKES is applicable to a wide variety of product design problems, while providing creative design ideas through the exploration of numerous Pareto optimal solutions.