دانلود مقاله ISI انگلیسی شماره 150135
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل بهینه سازی تکاملی و الگوریتم های تشخیص جامعه با استفاده از سلطه رگرسیون

عنوان انگلیسی
Analyzing evolutionary optimization and community detection algorithms using regression line dominance
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150135 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 396, August 2017, Pages 185-201

ترجمه کلمات کلیدی
الگوریتم های بهینه سازی تکاملی، رگرسیون خطی، بهینه سازی ذرات ذرات، تکامل دیفرانسیل، تجزیه و تحلیل ویژوال، الگوریتم تشخیص جامعه،
کلمات کلیدی انگلیسی
Evolutionary optimization algorithms; Linear regression; Particle swarm optimization; Differential evolution; Visual analysis; Community detection algorithms;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل بهینه سازی تکاملی و الگوریتم های تشخیص جامعه با استفاده از سلطه رگرسیون

چکیده انگلیسی

In this paper, a visual analysis methodology is proposed to perform comparative analysis of guided random algorithms such as evolutionary optimization algorithms and community detection algorithms. Proposed methodology is designed based on quantile-quantile plot and regression analysis to compare performance of one algorithm over other algorithms. The methodology is extrapolated as one-to-one comparison, one-to-many comparison and many-to-many comparison of solution quality and convergence rate. Most of the existing approaches utilize both solution quality and convergence rate to perform comparative analysis. However, the many-to-many comparison i.e. ranking of algorithms is done only with solution quality. On the contrary, with proposed methodology ranking of algorithms is done in terms of both solution quality and convergence rate. Proposed methodology is studied with four evolutionary optimization algorithms on 25 benchmark functions. A non-parametric statistical analysis called Wilcoxon signed-rank test is also performed to verify the indication of proposed methodology. Moreover, methodology is also applied to analyze four state-of-the-art community detection algorithms on 10 real-world networks.