دانلود مقاله ISI انگلیسی شماره 150143
ترجمه فارسی عنوان مقاله

الگوریتم تکاملی بهینه سازی چند منظوره جستجو بر اساس فضایی

عنوان انگلیسی
Search space-based multi-objective optimization evolutionary algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150143 2017 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Electrical Engineering, Volume 58, February 2017, Pages 126-143

ترجمه کلمات کلیدی
بهینه سازی چند هدفه تکاملی، فضای جستجو همگرائی فضای جستجو تنوع فضای جستجو الگوریتمهای تکاملی،
کلمات کلیدی انگلیسی
Evolutionary multi-objective optimization; Search space; Search space convergence; Search space diversity; Evolutionary algorithms;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تکاملی بهینه سازی چند منظوره جستجو بر اساس فضایی

چکیده انگلیسی

Evolutionary multi-objective optimization (EMO) algorithms are actively used for answering optimization problems with multiple contradictory objectives and scheming interpretable and precise real-time applications. A majority of existing EMO algorithms performs better on two or three objectives non-dominated problems; however, they meet complications in managing and maintaining a set of optimal solutions to multi-objective optimization problems. This paper proposes a search space-based multi-objective evolutionary algorithm (SSMOEA) for multi-objective optimization problems. To accomplish the potential of the search space-based method for solving multi-objective optimization problems and to reinforce the selection procedure toward the ideal direction while sustaining an extensive and uniform distribution of solutions is our key objective. To the best of our knowledge, this paper is the first attempt to propose a search space-based multi-objective evolutionary algorithm for multi-objective optimization. The experimental setup used showed that the proposed algorithm is good and competitive in comparison to the existing EMO algorithms from the viewpoint of finding a scattered and estimated solution set in multi-objective optimization problems. SSMOEA can achieve a good trade-off between search space convergence and search space diversity in the appropriate experimental setup.