دانلود مقاله ISI انگلیسی شماره 150211
ترجمه فارسی عنوان مقاله

الگوریتم تکاملی محدود سازگار برای نمونه گیری برای مشکلات بهینه سازی مستمر

عنوان انگلیسی
Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150211 2017 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 382–383, March 2017, Pages 216-233

ترجمه کلمات کلیدی
محدود کردن فضای جستجو الگوریتم تکاملی محدود سازگار، مشکل بهینه سازی مستمر، کالیبراسیون مدل شبیه سازی،
کلمات کلیدی انگلیسی
Search space narrowing; Adaptive bounding evolutionary algorithm; Continuous optimization problem; Simulation model calibration;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تکاملی محدود سازگار برای نمونه گیری برای مشکلات بهینه سازی مستمر

چکیده انگلیسی

This paper proposes a novel sampling-based adaptive bounding evolutionary algorithm termed SABEA that is capable of dynamically updating the search space during the evolution process for continuous optimization problems. The proposed SABEA adopts two bounding strategies, namely fitness-based bounding and probabilistic sampling-based bounding, to select a set of individuals over multiple generations and leverage the value information from these individuals to update the search space of a given problem for improving the solution accuracy and search efficiency. To evaluate the performance of this method, SABEA is applied on top of the classic differential evolution (DE) algorithm and a DE variant, and SABEA is compared to a state-of-the-art Distribution-based Adaptive Bounding Genetic Algorithm (DABGA) on a set of 27 selected benchmark functions. The results show that SABEA can be used as a complementary strategy for further enhancing the performance of existing evolutionary algorithms and it also outperforms DABGA. Finally, a practical problem, namely the model calibration for an agent-based simulation, is used to further evaluate SABEA. The results show SABEA’s applicability to diverse problems and its advantages over the traditional genetic algorithm-based calibration method and DABGA.