دانلود مقاله ISI انگلیسی شماره 150226
ترجمه فارسی عنوان مقاله

یک الگوریتم تکاملی جدید چند منظوره برای سیستم های توصیه شده

عنوان انگلیسی
A novel multi-objective evolutionary algorithm for recommendation systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150226 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Parallel and Distributed Computing, Volume 103, May 2017, Pages 53-63

ترجمه کلمات کلیدی
الگوریتم توصیه. بهینه سازی چند هدفه، تنوع موضوعی، اپراتور ژنتیکی،
کلمات کلیدی انگلیسی
Recommendation algorithm; Multi-objective optimization; Topic diversity; Genetic operator;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم تکاملی جدید چند منظوره برای سیستم های توصیه شده

چکیده انگلیسی

Nowadays, the recommendation algorithm has been used in lots of information systems and Internet applications. The recommendation algorithm can pick out the information that users are interested in. However, most traditional recommendation algorithms only consider the precision as the evaluation metric of the performance. Actually, the metrics of diversity and novelty are also very important for recommendation. Unfortunately, there is a conflict between precision and diversity in most cases. To balance these two metrics, some multi-objective evolutionary algorithms are applied to the recommendation algorithm. In this paper, we firstly put forward a kind of topic diversity metric. Then, we propose a novel multi-objective evolutionary algorithm for recommendation systems, called PMOEA. In PMOEA, we present a new probabilistic genetic operator. Through the extensive experiments, the results demonstrate that the combination of PMOEA and the recommendation algorithm can achieve a good balance between precision and diversity.