دانلود مقاله ISI انگلیسی شماره 150942
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل عملکرد حرارتی یک خورشید خمیده شیب دار با استفاده از آب آشامیدنی کشاورزی و شبکه عصبی مصنوعی در آب و هوای خشک

عنوان انگلیسی
Thermal performance analysis of an inclined passive solar still using agricultural drainage water and artificial neural network in arid climate
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150942 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Solar Energy, Volume 153, 1 September 2017, Pages 383-395

ترجمه کلمات کلیدی
شبکه های عصبی مصنوعی، بازده حرارتی، خورشیدی هنوز، رگرسیون خطی چندگانه، آب زهکشی کشاورزی،
کلمات کلیدی انگلیسی
Artificial neural network; Thermal efficiency; Solar still; Multiple linear regression; Agricultural drainage water;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل عملکرد حرارتی یک خورشید خمیده شیب دار با استفاده از آب آشامیدنی کشاورزی و شبکه عصبی مصنوعی در آب و هوای خشک

چکیده انگلیسی

In this study, a model based on artificial neural network (ANN) was developed in order to predict the thermal performance of an inclined passive solar still in an arid climate, in which the thermal performance of the still was expressed as instantaneous thermal efficiency (ITE). Agricultural drainage water (AWD) was used as a feed for the desalination process, and this is considered a non-conventional water source. Appropriate meteorological variables, viz., ambient air temperature, relative humidity, wind speed, and solar radiation were used alongside the key operational variables, viz., flow rate, temperature, and total dissolved solids of feed water were used as input variables. The results revealed that an ANN with six neurons and a hyperbolic tangent transfer function was the most appropriate model for ITE prediction. Consequently, the optimal ANN model had a 7–6–1 architecture. The results also indicated that the optimal ANN model forecast the ITE accurately, with a mean root mean square error (RMSE) of just 1.933% and a mean coefficient of determination (CD) of 0.949. To create a sensible comparison, a multiple linear regression (MLR) model was also developed. It was found that the ANN model performed better than the MLR model, which displayed a mean RMSE of 4.345% and a mean CD of 0.739. The mean relative errors of forecasted ITE values within the ANN model were mostly in the region of +8% to −6%. One major output of this research is a comprehensive assessment of the ANN modeling technique for the ITE of a solar still, which adds a new perspective to system analysis, design and modeling of the potential productivity of solar stills in terms of the AWD desalination process.