دانلود مقاله ISI انگلیسی شماره 151032
ترجمه فارسی عنوان مقاله

تولید بیو هیدروژن بوسیله عکسبرداری در محیط داخلی و در فضای باز با یک کنسرسیوم بی حرکتی: یک مدل فرایند با شبکه های عصبی

عنوان انگلیسی
Biohydrogen production by batch indoor and outdoor photo-fermentation with an immobilized consortium: A process model with Neural Networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151032 2018 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Biochemical Engineering Journal, Volume 135, 15 July 2018, Pages 1-10

ترجمه کلمات کلیدی
تولید بیوشیمیایی، کنسرسیوم امولسیون شده، مدل سازی عکس تخمیر، مدل های مبتنی بر داده ها، شبکه عصبی مصنوعی،
کلمات کلیدی انگلیسی
Biohydrogen production; Immobilized consortium; Photo-fermentation modeling; Data-based models; Artificial Neural Networks;
پیش نمایش مقاله
پیش نمایش مقاله  تولید بیو هیدروژن بوسیله عکسبرداری در محیط داخلی و در فضای باز با یک کنسرسیوم بی حرکتی: یک مدل فرایند با شبکه های عصبی

چکیده انگلیسی

This study reveals similar kinetic patterns among batch indoor photo-fermentations using tungsten light and batch outdoor photo-fermentations irradiated by solar light, only considering the lighting period. The potential of Artificial Neural Networks (ANN) as a modeling technique has been evidenced by simulating the biohydrogen production by photo-fermentation using an immobilized consortium of photo-bacteria. The ANN model was constructed with a set of indoor experimental fermentations operated on batch at 30 °C and under different conditions of light intensity, initial pH and metals concentrations (Fe, V and Mo) added to the medium. After that, the model was cross-validated on indoor photo-fermentations as well. Different ANN architectures were evaluated to develop the best data-based model. The chosen architecture can render the maximum correlation between the real bio-hydrogen production and the outputs provided by the ANN model. Experimental kinetics were contrasted with the modeled kinetics, evidencing the reliability of the model for predicting the biohydrogen production by supplying sampling times, and initial operating conditions such as metals concentration, light intensity and pH as input data. The ANN-based model was successfully validated on an outdoor fermentation, where light intensity changed along the process time, which demonstrated its veracity and generalization capacity.