دانلود مقاله ISI انگلیسی شماره 151960
ترجمه فارسی عنوان مقاله

رویکرد برنامه نویسی بیان ژن برای مدل سازی عملکرد هیدرولیک امیتری کانال های لبه دار

عنوان انگلیسی
Gene expression programming approach for modeling the hydraulic performance of labyrinth-channel emitters
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
151960 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers and Electronics in Agriculture, Volume 142, Part A, November 2017, Pages 450-460

ترجمه کلمات کلیدی
هوش مصنوعی، آبیاری قطره ای تنش جریان امیتر، ضریب تغییرات تولید کننده،
کلمات کلیدی انگلیسی
Artificial intelligence; Drip irrigation; Emitter flow variation; Manufacturer’s coefficient of variation;
پیش نمایش مقاله
پیش نمایش مقاله  رویکرد برنامه نویسی بیان ژن برای مدل سازی عملکرد هیدرولیک امیتری کانال های لبه دار

چکیده انگلیسی

The different hydraulic measures of emitter flow variation (qvar) and manufacturer’s coefficient of variation (CVm) at different operating pressure (P) and water temperature (T) were determined by measuring the discharge of different labyrinth-channel emitters. Gene expression programming (GEP) was used to model and predict qvar and CVm of the labyrinth emitters. The structural parameters of each labyrinth emitter [namely, trapezoidal unit number (N), height (H), and spacing (S), and path width (W) and length (L)] as well as P and T were considered as independent variables. The accuracy of GEP models was evaluated by their coefficient of determination (R2), root-mean-square error (RMSE), overall index of model performance (OI), and mean absolute error (MAE). Results of GEP applications established that L and S were the least important variables affecting qvar and CVm, respectively, while N and H were the most important variables. For qvar, the GEPwithout L model gave higher R2 and OI and lower RMSE and MAE than those of the GEPwithout S model. Conversely, for CVm, R2 and OI of the GEPwithout L model were lower and its RMSE and MAE were higher than the corresponding parameters of the GEPwithout S model. Overall, our results indicated that the performance of the developed GEP models were better at predicting qvar and CVm for non-pressure-compensating emitters than pressure-compensating ones. The GEP approach can be a good tool to predict the hydraulic performance of labyrinth emitters.