دانلود مقاله ISI انگلیسی شماره 152291
ترجمه فارسی عنوان مقاله

برآورد عملکرد در باغ های مرکبات از طریق شناسایی میوه و شمارش با استفاده از پردازش تصویر

عنوان انگلیسی
An yield estimation in citrus orchards via fruit detection and counting using image processing
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
152291 2017 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers and Electronics in Agriculture, Volume 140, August 2017, Pages 103-112

ترجمه کلمات کلیدی
تشخیص رنگ، مرکبات، آستانه، تقسیم حوزه آبریز، الگوریتم شمارش، برآورد عملکرد، پردازش تصویر،
کلمات کلیدی انگلیسی
Color detection; Citrus; Threshold; Watershed segmentation; Counting algorithm; Yield estimation; Image processing;
پیش نمایش مقاله
پیش نمایش مقاله  برآورد عملکرد در باغ های مرکبات از طریق شناسایی میوه و شمارش با استفاده از پردازش تصویر

چکیده انگلیسی

The overall goal of this study is to develop an effective, simple, aptly computer vision algorithm to detect and count citrus on the tree using image processing techniques, to estimate the yield, and to compare the yield estimation results obtained through several methods. This new citrus recognition and counting algorithm was utilized the color features (or schemes) to present an estimate of the citrus yield, and the corresponding models are developed to provide an early estimation of the citrus yield. Citrus images were taken from Jeju, South Korea during daylight and the citrus recognition and counting algorithm were tested on 84 images which were collected from 21 trees. The citrus counting algorithm consisted of the following steps: convert RGB image to HSV, thresholding, orange color detection, noise removal, watershed segmentation, and counting. Distance transform and marker-controlled watershed algorithms were evaluated for automated watershed segmentation in citrus fruits to obtain good result. A correlation coefficient R2 of 0.93 was obtained between the citrus counting algorithm and counting performed through human observation. The proposed algorithm showed great potential for early prediction of the yield of single citrus trees and the possibility of its uses for further fruit crops.