دانلود مقاله ISI انگلیسی شماره 64571
ترجمه فارسی عنوان مقاله

پیش بینی برای سطح تابش خورشیدی در منطقه شمال شرقی برزیل با استفاده از مدل NWP و شبکه های عصبی مصنوعی

عنوان انگلیسی
Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
64571 2016 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 87, Part 1, March 2016, Pages 807–818

ترجمه کلمات کلیدی
پیش بینی انرژی خورشیدی؛ شبکه های عصبی مصنوعی؛ مدل WRF؛ تابش خورشیدی
کلمات کلیدی انگلیسی
Solar energy forecast; Artificial neural network; WRF model; Solar irradiance
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی برای سطح تابش خورشیدی در منطقه شمال شرقی برزیل با استفاده از مدل NWP و شبکه های عصبی مصنوعی

چکیده انگلیسی

There has been a growing demand on energy sector for short-term predictions of energy resources to support the planning and management of electricity generation and distribution systems. The purpose of this work is establishing a methodology to produce solar irradiation forecasts for the Brazilian Northeastern region by using Weather Research and Forecasting Model (WRF) combined with a statistical post-processing method. The 24 h solar irradiance forecasts were obtained using the WRF model. In order to reduce uncertainties, a cluster analysis technique was employed to select areas presenting similar climate features. Comparison analysis between WRF model outputs and observational data were performed to evaluate the model skill in forecasting surface solar irradiance. Next, model-derived short-term solar irradiance forecasts from the WRF outputs were refined by using an artificial neural networks (ANNs) technique. The output variables of the WRF model representing the forecasted atmospheric conditions were used as predictors by ANNs, adjusted to calculate the solar radiation incident for the entire Brazilian Northeastern (NEB) (which was divided into four homogeneous regions, defined by the Ward method). The data used in this study was from rainy and dry seasons between 2009 and 2011. Several predictors were tested to adjust and simulate the ANNs. We found the best ANN architecture and a group of 10 predictors, in which a deeper analyzes were carried out, including performance evaluation for Fall and Spring of 2011 (rainy and dry season in NEB, mainly in the northern section). There was a significant improvement of the WRF model forecasts when adjusted by the ANNs, yielding lower bias and RMSE, and an increase in the correlation coefficient.