دانلود مقاله ISI انگلیسی شماره 66280
ترجمه فارسی عنوان مقاله

درک ترانسفورماتورهای نانولیمی در سنگ آهک ماستریخت

عنوان انگلیسی
Understanding the transport of nanolime consolidants within Maastricht limestone
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
66280 2016 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Cultural Heritage, Volume 18, March–April 2016, Pages 242–249

ترجمه کلمات کلیدی
نانولیم، محصولات تثبیت کننده، حمل و نقل، عمق نفوذ، سنگ آهک
کلمات کلیدی انگلیسی
Nanolime; Consolidation products; Transport; Penetration depth; Limestone

چکیده انگلیسی

Novel nanomaterials, such as nanosilica or nano-titanium oxide, have been developed in the last decade for the conservation of the built heritage. Among nanomaterials, nanolimes have acquired a considerable relevance due to their potentialities as consolidant product. The so-called nanolimes, colloidal dispersions of calcium hydroxide nanoparticles in alcohols, have been successfully applied as pre-consolidants on frescos and paper, and their use has later been extended to plasters, renders and stone. Nanolimes have better potentialities compared to conventional inorganic consolidants based on limewater (e.g. faster carbonation rate and higher calcium hydroxide concentration). Moreover, nanolimes are considered more compatible with CaCO3-based substrates than alkoxysilanes (e.g. TEOS), the most widely used consolidant products. Nanolimes can guarantee the recovery of the superficial cohesion of degraded materials. However, when a mass consolidation is required, like in the case of decayed stone, nanolimes show some limitations. One of the problems is caused by nanolime accumulation at or just beneath the surface of the treated material. In order to solve this problem, the transport mechanism of nanolime within porous materials, as stone or renders, should first be better understood. Commercial nanolimes were applied on Maastricht limestone, a high-porosity yellowish limestone, used in the Netherlands and Belgium as traditional building material. The absorption and drying behaviour of nanolime in this limestone was measured and nanolime deposition in the stone was studied by optical and scanning electron microscopy. The results show that nanolime transport is strictly related to the properties of the solvent. The alcoholic solvent guarantees a stable dispersion that penetrates in depth in the material, but is partially back-transported to surface. The high volatility of the solvent and the high stability of the dispersion favour the partial back-migration of lime nanoparticles to the surface during drying.