دانلود مقاله ISI انگلیسی شماره 67485
ترجمه فارسی عنوان مقاله

چارچوب ارزیابی Meyer-Fugl کمی از راه دور برای بیماران سکته مغزی بر اساس شبکه های حسگر پوشیدنی

عنوان انگلیسی
A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
67485 2016 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Methods and Programs in Biomedicine, Volume 128, May 2016, Pages 100–110

ترجمه کلمات کلیدی
شبکه های حسگر پوشیدنی؛ ارزیابی کمی؛ سکته مغزی؛ عملکرد حرکتی اندام فوقانی - Fugl-Meyer؛ تنظیمات غیر بالینی
کلمات کلیدی انگلیسی
Wearable sensor networks; Quantitative assessment; Stroke; Upper limb motor function; Fugl-Meyer; Non-clinical settings
پیش نمایش مقاله
پیش نمایش مقاله  چارچوب ارزیابی Meyer-Fugl کمی از راه دور برای بیماران سکته مغزی بر اساس شبکه های حسگر پوشیدنی

چکیده انگلیسی

To extend the use of wearable sensor networks for stroke patients training and assessment in non-clinical settings, this paper proposes a novel remote quantitative Fugl-Meyer assessment (FMA) framework, in which two accelerometer and seven flex sensors were used to monitoring the movement function of upper limb, wrist and fingers. The extreme learning machine based ensemble regression model was established to map the sensor data to clinical FMA scores while the RRelief algorithm was applied to find the optimal features subset. Considering the FMA scale is time-consuming and complicated, seven training exercises were designed to replace the upper limb related 33 items in FMA scale. 24 stroke inpatients participated in the experiments in clinical settings and 5 of them were involved in the experiments in home settings after they left the hospital. Both the experimental results in clinical and home settings showed that the proposed quantitative FMA model can precisely predict the FMA scores based on wearable sensor data, the coefficient of determination can reach as high as 0.917. It also indicated that the proposed framework can provide a potential approach to the remote quantitative rehabilitation training and evaluation.