دانلود مقاله ISI انگلیسی شماره 67593
ترجمه فارسی عنوان مقاله

روش جمع آوری داده ها تطبیقی مبتنی بر انرژی باقی مانده برای شبکه های حسگر تناوبی

عنوان انگلیسی
Residual energy-based adaptive data collection approach for periodic sensor networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
67593 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Ad Hoc Networks, Volume 35, December 2015, Pages 149–160

ترجمه کلمات کلیدی
شبکه های حسگر تناوبی (PSNS)؛ مدل های نمونه تطبیقی؛ انرژی باقی مانده؛ اندازه گیری داده های واقعی
کلمات کلیدی انگلیسی
Periodic sensor networks (PSNs); Adaptive sampling models; Residual energy; Real data measurements
پیش نمایش مقاله
پیش نمایش مقاله  روش جمع آوری داده ها تطبیقی مبتنی بر انرژی باقی مانده برای شبکه های حسگر تناوبی

چکیده انگلیسی

Due to its potential applications and the density of the deployed sensors, distributed wireless sensor networks are one of the highly anticipated key contributors of the big data in the future. Consequently, massive data collected by the sensors beside the limited battery power are the main limitations imposed by such networks. In this paper, we consider a periodic sensor networks (PSNs) where sensors transmit their data to the sink on a periodic basis. We propose an efficient adaptive model of data collection dedicated to PSN, in order to increase the network lifetime and to reduce the huge amount of the collected data. The main idea behind this approach is to allow each sensor node to adapt its sampling rate to the physical changing dynamics. In this way, the oversampling can be minimized and the power efficiency of the overall network system can be further improved. The proposed method is based on the dependence of measurements variance while taking into account the residual energy that varies over time. We study three well known statistical tests based on One-Way Anova model. Then, we propose a multiple levels activity model that uses behavior functions modeled by modified Bezier curves to define application classes and allow for sampling adaptive rate. Experiments on real sensors data show that our approach can be effectively used to minimize the amount of data retrieved by the network and conserve energy of the sensors, without loss of fidelity/accuracy.