دانلود مقاله ISI انگلیسی شماره 67599
ترجمه فارسی عنوان مقاله

محلی سازی گره برد آزاد 3D در شبکه های حسگر بی سیم ناهمسان گرد

عنوان انگلیسی
Range-free 3D node localization in anisotropic wireless sensor networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
67599 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 34, September 2015, Pages 438–448

ترجمه کلمات کلیدی
هینه سازی ازدحام هیبرید ذرات (PSO)؛ بهینه سازی مبتنی بر جغرافیای زیستی (BBO)؛ شبکه های حسگر بی سیم (WSN ها)؛ مدل نامنظم رادیو (RIM)؛ سیستم منطق فازی (FLS)
کلمات کلیدی انگلیسی
Hybrid-particle swarm optimization (HPSO); Biogeography based optimization (BBO); Wireless sensor networks (WSNs); Radio irregular model (RIM); Fuzzy logic system (FLS)
پیش نمایش مقاله
پیش نمایش مقاله  محلی سازی گره برد آزاد  3D در شبکه های حسگر بی سیم ناهمسان گرد

چکیده انگلیسی

In this paper, we propose two computationally efficient ‘range-free’ 3D node localization schemes using the application of hybrid-particle swarm optimization (HPSO) and biogeography based optimization (BBO). It is considered that nodes are deployed with constraints over three layer boundaries, in an anisotropic environment. The anchor nodes are randomly distributed over the top layer only and target nodes distributed over the middle and bottom layers. Radio irregularity factor, i.e., an anisotropic property of propagation media and heterogenous properties of the devices are considered. To overcome the non-linearity between received signal strength (RSS) and distance, edge weights between each target node and neighboring anchor nodes have been considered to compute the location of the target node. These edge weights are modeled using fuzzy logic system (FLS) to reduce the computational complexity. The edge weights are further optimized by HPSO and BBO separately to minimize the location error. Both the proposed applications of the two algorithms are compared with the earlier proposed range-free algorithms in literature, i.e., the simple centroid method and weighted centroid method. The results of our proposed applications of the two algorithms are better as compared to centroid and weighted centroid methods in terms of error and scalability.