دانلود مقاله ISI انگلیسی شماره 67618
ترجمه فارسی عنوان مقاله

مکانیزم برنامه ریزی نمونه مبتنی بر سنجش تراکمی تطبیقی برای شبکه های حسگر بی سیم

عنوان انگلیسی
Adaptive compressive sensing based sample scheduling mechanism for wireless sensor networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
67618 2015 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pervasive and Mobile Computing, Volume 22, September 2015, Pages 113–125

ترجمه کلمات کلیدی
سنجش فشاری؛ برنامه ریزی نمونه؛ بهره وری انرژی؛ شبکه های حسگر بی سیم
کلمات کلیدی انگلیسی
Compressive sensing; Sample scheduling; Energy efficiency; Wireless sensor network
پیش نمایش مقاله
پیش نمایش مقاله  مکانیزم برنامه ریزی نمونه مبتنی بر سنجش تراکمی تطبیقی برای شبکه های حسگر بی سیم

چکیده انگلیسی

Sample scheduling is a crucial issue in wireless sensor networks (WSNs). The design objectives of efficient sample scheduling are in general two-folds: to achieve a low sample rate and also high sensing quality. Recently, compressive sensing (CS) has been regarded as an effective paradigm for achieving high sensing quality at a low sample rate. However, most existing work in the area of CS for WSNs use fixed sample rates, which may make sensor nodes in a WSN unable to capture significant changes of target phenomenon, unless the sample rate is sufficiently high, and thus degrades the sensing quality. In this paper, to pursue high sensing quality at low sample rate, we propose an adaptive CS based sample scheduling mechanism (ACS) for WSNs. ACS estimates the minimum required sample rate subject to given sensing quality on a per-sampling-window basis and accordingly adjusts sensors’ sample rates. ACS can be useful in many applications such as environment monitoring, and spectrum sensing in cognitive sensor networks. Extensive trace-driven experiments are conducted and the numerical results show that ACS can obtain high sensing quality at low sample rate.