دانلود مقاله ISI انگلیسی شماره 67630
ترجمه فارسی عنوان مقاله

توموگرافی لرزه ای زمان سفر توزیع شده در شبکه های حسگر در مقیاس بزرگ

عنوان انگلیسی
Distributed travel-time seismic tomography in large-scale sensor networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
67630 2016 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Parallel and Distributed Computing, Volume 89, March 2016, Pages 50–64

ترجمه کلمات کلیدی
محاسبات توزیع شده؛ توموگرافی لرزه ای؛ شبکه های حسگر؛ Mt - St - Helens
کلمات کلیدی انگلیسی
Distributed computing; Seismic tomography; Sensor network; Mt. St. Helens
پیش نمایش مقاله
پیش نمایش مقاله  توموگرافی لرزه ای زمان سفر توزیع شده در شبکه های حسگر در مقیاس بزرگ

چکیده انگلیسی

Current geophysical techniques for visualizing seismic activity employ image reconstruction methods that rely on a centralized approach for processing the raw data captured by seismic sensors. The data is either gathered manually, or relayed by expensive broadband stations, and then processed at a base station. This approach is time-consuming (weeks to months) and hazardous as the task involves manual data gathering in extreme conditions. Also, raw seismic samples are typically in the range of 16–24 bit, sampled at 50–200 Hz and transferring this high fidelity sample from large number of sensors to a centralized station results in a bottleneck due to bandwidth limitations. To avoid these issues, a new distributed method is required which processes raw seismic samples inside each node and obtains a high-resolution seismic tomography in real time. In this paper, we present a component-averaged distributed multi-resolution evolving tomography algorithm for processing data and inverting volcano tomography in the network while avoiding centralized computation and costly data collection. The algorithm is first evaluated for the correctness using a synthetic model in a CORE emulator. Later, our proposed algorithm runs using the real data obtained from Mt. St. Helens, WA, USA. The results validate that our distributed algorithm is able to obtain a satisfactory image similar to centralized computation under constraints of network resources, while distributing the computational burden to sensor nodes.