دانلود مقاله ISI انگلیسی شماره 78786
ترجمه فارسی عنوان مقاله

یک الگوریتم محصولات شرکت های چند هدفه برای برنامه ریزی انرژی کارآمد در مرکز داده های سبز

عنوان انگلیسی
A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78786 2016 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Operations Research, Volume 75, November 2016, Pages 103–117

ترجمه کلمات کلیدی
برنامه ریزی؛ صرفه جویی در انرژی - مرکز داده های سبز؛ بهینه سازی چند هدفه
کلمات کلیدی انگلیسی
Scheduling; Energy-efficient; Green data center; Multi-objective optimization
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم محصولات شرکت های چند هدفه برای برنامه ریزی انرژی کارآمد در مرکز داده های سبز

چکیده انگلیسی

Nowadays, the environment protection and the energy crisis prompt more computing centers and data centers to use the green renewable energy in their power supply. To improve the efficiency of the renewable energy utilization and the task implementation, the computational tasks of data center should match the renewable energy supply. This paper considers a multi-objective energy-efficient task scheduling problem on a green data center partially powered by the renewable energy, where the computing nodes of the data center are DVFS-enabled. An enhanced multi-objective co-evolutionary algorithm, called OL-PICEA-g, is proposed for solving the problem, where the PICEA-g algorithm with the generalized opposition based learning is applied to search the suitable computing node, supply voltage and clock frequency for the task computation, and the smart time scheduling strategy is employed to determine the start and finish time of the task on the chosen node. In the experiments, the proposed OL-PICEA-g algorithm is compared with the PICEA-g algorithm, the smart time scheduling strategy is compared with two other scheduling strategies, i.e., Green-Oriented Scheduling Strategy and Time-Oriented Scheduling Strategy, different parameters are also tested on the randomly generated instances. Experimental results confirm the superiority and effectiveness of the proposed algorithm.