دانلود مقاله ISI انگلیسی شماره 78789
ترجمه فارسی عنوان مقاله

روش مقدار دهی اولیه جمعیت برای الگوریتم های تکاملی بر اساس دسته بندی و انحراف کوشی

عنوان انگلیسی
A population initialization method for evolutionary algorithms based on clustering and Cauchy deviates
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78789 2016 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 60, 30 October 2016, Pages 294–310

ترجمه کلمات کلیدی
انحراف کوشی؛ خوشه؛ تکامل تفاضلی؛ الگوریتم های تکاملی؛ جمعیت اولیه؛ جهش
کلمات کلیدی انگلیسی
Cauchy deviates; Clustering; Differential evolution; Evolutionary algorithms; Initial population; Mutation
پیش نمایش مقاله
پیش نمایش مقاله  روش مقدار دهی اولیه جمعیت برای الگوریتم های تکاملی بر اساس دسته بندی و انحراف کوشی

چکیده انگلیسی

The initial population of an evolutionary algorithm is an important factor which affects the convergence rate and ultimately its ability to find high quality solutions or satisfactory solutions for that matter. If composed of good individuals it may bias the search towards promising regions of the search space right from the beginning. Although, if no knowledge about the problem at hand is available, the initial population is most often generated completely random, thus no such behavior can be expected. This paper proposes a method for initializing the population that attempts to identify i.e., to get close to promising parts of the search space and to generate (relatively) good solutions in their proximity. The method is based on clustering and a simple Cauchy mutation. The results obtained on a broad set of standard benchmark functions suggest that the proposed method succeeds in the aforementioned which is most noticeable as an increase in convergence rate compared to the usual initialization approach and a method from the literature. Also, insight into the usefulness of advanced initialization methods in higher-dimensional search spaces is provided, at least to some degree, by the results obtained on higher-dimensional problem instances—the proposed method is beneficial in such spaces as well. Moreover, results on several very high-dimensional problem instances suggest that the proposed method is able to provide a good starting position for the search.