دانلود مقاله ISI انگلیسی شماره 78792
ترجمه فارسی عنوان مقاله

الگوریتم تکاملی Cascaded برای شناسایی سیستم های غیر خطی بر اساس شبکه های عصبی توابع همبستگی و توابع پایه شعاعی

عنوان انگلیسی
Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78792 2016 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volumes 68–69, February 2016, Pages 378–393

ترجمه کلمات کلیدی
شناسایی سیستم؛ سیستمهای غیر خطی؛ Magnetorheological damper؛ آزمون همبستگی؛ انتخاب ورودی؛ الگوریتم های تکاملی
کلمات کلیدی انگلیسی
System identification; Nonlinear systems; Magnetorheological damper; Correlation tests; Input selection; Evolutionary algorithms
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تکاملی Cascaded برای شناسایی سیستم های غیر خطی بر اساس شبکه های عصبی توابع همبستگی و توابع پایه شعاعی

چکیده انگلیسی

The present work introduces a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models with an improved objective function based on the residuals and its correlation function coefficients. We show the results when the proposed methodology is applied to model a magnetorheological damper, with real acquired data, and other two well-known benchmarks. The canonical genetic and differential evolution algorithms are used in cascade to decompose the problem of defining the lags taken as the inputs of the model and its related parameters based on the simultaneous minimization of the residuals and higher orders correlation functions. The inner layer of the cascaded approach is composed of a population which represents the lags on the inputs and outputs of the system and an outer layer represents the corresponding parameters of the RBFNN. The approach is able to define both the inputs of the model and its parameters. This is interesting as it frees the designer of manual procedures, which are time consuming and prone to error, usually done to define the model inputs. We compare the proposed methodology with other works found in the literature, showing overall better results for the cascaded approach.