دانلود مقاله ISI انگلیسی شماره 78821
ترجمه فارسی عنوان مقاله

استفاده از الگوریتم های تکاملی چند هدفه خطوط تولید نرم افزار پویا برای تنظیم مجدد برنامه های کاربردی موبایل

عنوان انگلیسی
Applying multiobjective evolutionary algorithms to dynamic software product lines for reconfiguring mobile applications
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78821 2015 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Systems and Software, Volume 103, May 2015, Pages 392–411

ترجمه کلمات کلیدی
DSPL؛ پیکر بندی دوباره پویا - الگوریتم های تکاملی
کلمات کلیدی انگلیسی
DSPL; Dynamic reconfiguration; Evolutionary algorithms,
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از الگوریتم های تکاملی چند هدفه خطوط تولید نرم افزار پویا برای تنظیم مجدد برنامه های کاربردی موبایل

چکیده انگلیسی

Mobile applications require dynamic reconfiguration services (DRS) to self-adapt their behavior to the context changes (e.g., scarcity of resources). Dynamic Software Product Lines (DSPL) are a well-accepted approach to manage runtime variability, by means of late binding the variation points at runtime. During the system’s execution, the DRS deploys different configurations to satisfy the changing requirements according to a multiobjective criterion (e.g., insufficient battery level, requested quality of service). Search-based software engineering and, in particular, multiobjective evolutionary algorithms (MOEAs), can generate valid configurations of a DSPL at runtime. Several approaches use MOEAs to generate optimum configurations of a Software Product Line, but none of them consider DSPLs for mobile devices. In this paper, we explore the use of MOEAs to generate at runtime optimum configurations of the DSPL according to different criteria. The optimization problem is formalized in terms of a Feature Model (FM), a variability model. We evaluate six existing MOEAs by applying them to 12 different FMs, optimizing three different objectives (usability, battery consumption and memory footprint). The results are discussed according to the particular requirements of a DRS for mobile applications, showing that PAES and NSGA-II are the most suitable algorithms for mobile environments.