دانلود مقاله ISI انگلیسی شماره 78862
ترجمه فارسی عنوان مقاله

یک الگوریتم تکاملی قوی برای بهبود منحنی Gielis منطقی

عنوان انگلیسی
A robust evolutionary algorithm for the recovery of rational Gielis curves
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78862 2013 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 46, Issue 8, August 2013, Pages 2078–2091

ترجمه کلمات کلیدی
Superquadrics؛ منحنی Gielis؛ بهينه سازي؛ الگوریتم تکاملی؛ R-توابع
کلمات کلیدی انگلیسی
Superquadrics; Gielis curves; Optimization; Evolutionary algorithm; R-functions
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم تکاملی قوی برای بهبود منحنی Gielis منطقی

چکیده انگلیسی

Gielis curves (GC) can represent a wide range of shapes and patterns ranging from star shapes to symmetric and asymmetric polygons, and even self intersecting curves. Such patterns appear in natural objects or phenomena, such as flowers, crystals, pollen structures, animals, or even wave propagation. Gielis curves and surfaces are an extension of Lamé curves and surfaces (superquadrics) which have benefited in the last two decades of extensive researches to retrieve their parameters from various data types, such as range images, 2D and 3D point clouds, etc. Unfortunately, the most efficient techniques for superquadrics recovery, based on deterministic methods, cannot directly be adapted to Gielis curves. Indeed, the different nature of their parameters forbids the use of a unified gradient descent approach, which requires initial pre-processings, such as the symmetry detection, and a reliable pose and scale estimation. Furthermore, even the most recent algorithms in the literature remain extremely sensitive to initialization and often fall into local minima in the presence of large missing data. We present a simple evolutionary algorithm which overcomes most of these issues and unifies all of the required operations into a single though efficient approach. The key ideas in this paper are the replacement of the potential fields used for the cost function (closed form) by the shortest Euclidean distance (SED, iterative approach), the construction of cost functions which minimize the shortest distance as well as the curve length using R-functions, and slight modifications of the evolutionary operators. We show that the proposed cost function based on SED and R-function offers the best compromise in terms of accuracy, robustness to noise, and missing data.