دانلود مقاله ISI انگلیسی شماره 78880
ترجمه فارسی عنوان مقاله

استنتاج شبکه های علتی با استفاده از نقشه شناختی فازی و الگوریتم های تکاملی با نرم افزار بازسازی شبکه نظارتی ژن

عنوان انگلیسی
Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78880 2015 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 37, December 2015, Pages 667–679

ترجمه کلمات کلیدی
الگوریتم های تکاملی؛ نقشه شناختی فازی؛ شبکه نظارتی ژن؛ الگوریتم یادگیری؛ بهينه سازي
کلمات کلیدی انگلیسی
Evolutionary algorithms; Fuzzy cognitive map; Gene regulatory networks; Learning algorithm; Optimization
پیش نمایش مقاله
پیش نمایش مقاله  استنتاج شبکه های علتی با استفاده از نقشه شناختی فازی و الگوریتم های تکاملی با نرم افزار بازسازی شبکه نظارتی ژن

چکیده انگلیسی

Fuzzy cognitive maps have been widely used as abstract models for complex networks. Traditional ways to construct fuzzy cognitive maps rely on domain knowledge. In this paper, we propose to use fuzzy cognitive map learning algorithms to discover domain knowledge in the form of causal networks from data. More specifically, we propose to infer gene regulatory networks from gene expression data. Furthermore, a new efficient fuzzy cognitive map learning algorithm based on a decomposed genetic algorithm is developed to learn large scale networks. In the proposed algorithm, the simulation error is used as the objective function, while the model error is expected to be minimized. Experiments are performed to explore the feasibility of this approach. The high accuracy of the generated models and the approximate correlation between simulation errors and model errors suggest that it is possible to discover causal networks using fuzzy cognitive map learning. We also compared the proposed algorithm with ant colony optimization, differential evolution, and particle swarm optimization in a decomposed framework. Comparison results reveal the advantage of the decomposed genetic algorithm on datasets with small data volumes, large network scales, or the presence of noise.