دانلود مقاله ISI انگلیسی شماره 78881
ترجمه فارسی عنوان مقاله

چارچوب کلی برای الگوریتم های تکاملی چند هدفه متمرکز شده

عنوان انگلیسی
General framework for localised multi-objective evolutionary algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78881 2014 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 258, 10 February 2014, Pages 29–53

ترجمه کلمات کلیدی
بهینه سازی چند هدفه؛ الگوریتم تکاملی؛ چارچوب؛ خوشه بندی
کلمات کلیدی انگلیسی
Multi-objective optimisation; Evolutionary algorithm; Framework; Clustering
پیش نمایش مقاله
پیش نمایش مقاله  چارچوب کلی برای الگوریتم های تکاملی چند هدفه متمرکز شده

چکیده انگلیسی

Many real-world problems have multiple competing objectives and can often be formulated as multi-objective optimisation problems. Multi-objective evolutionary algorithms (MOEAs) have proven very effective in obtaining a set of trade-off solutions for such problems. This research seeks to improve both the accuracy and the diversity of these solutions through the local application of evolutionary operators to selected sub-populations. A local operation-based implementation framework is presented in which a population is partitioned, using hierarchical clustering, into a pre-defined number of sub-populations. Environment-selection and genetic-variation are then applied to each sub-population. The effectiveness of this approach is demonstrated on 2- and 4-objective benchmark problems. The performance of each of four best-in-class MOEAs is compared with their modified local operation-based versions derived from this framework. In each case the introduction of the local operation-based approach improves performance. Further, it is shown that the combined use of local environment-selection and local genetic-variation is better than the application of either local environment-selection or local genetic-variation alone. Preliminary results indicate that the selection of a suitable number of sub-populations is related to problem dimension as well as to population size.