دانلود مقاله ISI انگلیسی شماره 78890
ترجمه فارسی عنوان مقاله

خوشه بندی نمودار های احتمالاتی بزرگ با استفاده از الگوریتم تکاملی چند جمعیت

عنوان انگلیسی
Clustering large probabilistic graphs using multi-population evolutionary algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78890 2015 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 317, 1 October 2015, Pages 78–95

ترجمه کلمات کلیدی
نمودار های احتمالاتی؛ خوشه بندی؛ الگوریتم تکاملی چند جمعیت؛ استخراج معدن نمودار
کلمات کلیدی انگلیسی
Probabilistic graphs; Clustering; Multi-population evolutionary algorithm; Graph mining
پیش نمایش مقاله
پیش نمایش مقاله  خوشه بندی نمودار های احتمالاتی بزرگ با استفاده از الگوریتم تکاملی چند جمعیت

چکیده انگلیسی

Determining valid clustering is an important research problem. This problem becomes complex if the underlying data has inherent uncertainties. The work presented in this paper deals with clustering large probabilistic graphs using multi-population evolutionary algorithm. The evolutionary algorithm (EA) initializes its multiple populations, each representing a deterministic version of the same probabilistic graph given to it as an input. Multiple deterministic versions of the same input graph are generated by applying different thresholds to the edges. Each chromosome of the multiple populations represents one complete clustering solution. For the purpose of clustering, EA is employed which is guided by pKwikCluster algorithm. The proposed approach is tested on two natively probabilistic graphs and nine synthetically converted probabilistic graphs using cluster validity indices of Davies–Bouldin index, Dunn index, and Silhouette coefficient. The proposed approach is also compared with two baseline clustering algorithms for uncertain data, Fuzzy-DBSCAN and uncertain K-mean and two state-of-the-art approaches for clustering probabilistic graphs. The results obtained suggest that the proposed solution gives better performance than the baseline methods and the state-of-the-art algorithms.