دانلود مقاله ISI انگلیسی شماره 78893
ترجمه فارسی عنوان مقاله

پارامتر برای مدل سازی آبخیز توزیع شده با استفاده از داده های ملی و الگوریتم تکاملی

عنوان انگلیسی
Parameterization for distributed watershed modeling using national data and evolutionary algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78893 2013 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Geosciences, Volume 58, August 2013, Pages 80–90

ترجمه کلمات کلیدی
کالیبراسیون؛ مدل سازی هیدرولوژیکی مبتنی بر فیزیک؛ رودخانه Little Juniata؛ PIMA؛ SSHCO؛ نهر Young Womans
کلمات کلیدی انگلیسی
Calibration; Physics-based hydrological modeling; Little Juniata river; PIHM; SSHCZO; Young Womans creek
پیش نمایش مقاله
پیش نمایش مقاله  پارامتر برای مدل سازی آبخیز توزیع شده با استفاده از داده های ملی و الگوریتم تکاملی

چکیده انگلیسی

Distributed hydrologic models supported by national soil survey, geology, topography and vegetation data products can provide valuable information about the watershed hydrologic cycle. However numerical simulation of the multi-state, multi-process system is structurally complex and computationally intensive. This presents a major difficulty in model calibration using traditional techniques. This paper presents an efficient calibration strategy for the physics-based, fully coupled, distributed hydrologic model Penn State Integrated Hydrologic Model (PIHM) with the support of national data products. PIHM uses a semi-discrete Finite Volume Method (FVM) formulation of the system of coupled ordinary differential equations (e.g. canopy interception, transpiration, soil evaporation) and partial differential equations (e.g. groundwater-surface water, overland flow, infiltration, channel flow, etc.). The matrix of key parameters to be estimated in the optimization process was partitioned into two groups according to the sensitivity to difference in time scales. The first group of parameters generally describes hydrologic processes influenced by hydrologic events (event-scale group: EG), which are sensitive to short time runoff generation, while the second group of parameters is largely influenced by seasonal changes in energy (seasonal time scale group: SG). The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is used to optimize the EG parameters in Message Passing Interface (MPI) environment, followed by the estimation of parameters in the SG. The calibration strategy was applied at three watersheds in central PA: a small upland catchment (8.4 ha), a watershed in the Appalachian Plateau (231 km2) and the Valley and Ridge of central Pennsylvania (843 km2). A partition calibration enabled a fast and efficient estimation of parameters.