دانلود مقاله ISI انگلیسی شماره 78906
ترجمه فارسی عنوان مقاله

روش پیش بینی بار کوتاه مدت جدید بر اساس الگوریتم عصبی تکاملی و انتخاب ویژگی پر هرج و مرج

عنوان انگلیسی
A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78906 2014 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 62, November 2014, Pages 862–867

ترجمه کلمات کلیدی
پیش بینی بار کوتاه مدت؛ شبکه عصبی؛ سری های زمانی آشوبی؛ انتخاب ویژگی؛ فضای فاز بازسازی؛ تکامل دیفرانسیل
کلمات کلیدی انگلیسی
Short-term load forecast; Neural network; Chaotic time series; Feature selection; Reconstructed phase space; Differential Evolutionary
پیش نمایش مقاله
پیش نمایش مقاله  روش پیش بینی بار کوتاه مدت جدید بر اساس الگوریتم عصبی تکاملی و انتخاب ویژگی پر هرج و مرج

چکیده انگلیسی

In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.