دانلود مقاله ISI انگلیسی شماره 78907
ترجمه فارسی عنوان مقاله

کاشت جمعیت اولیه از الگوریتم های تکاملی چند هدفه: مطالعه محاسباتی

عنوان انگلیسی
Seeding the initial population of multi-objective evolutionary algorithms: A computational study
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78907 2015 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 33, August 2015, Pages 223–230

ترجمه کلمات کلیدی
بهینه سازی چند هدفه؛ تقریب؛ مطالعه تطبیقی؛ ارزیابی محدود
کلمات کلیدی انگلیسی
Multi-objective optimization; Approximation; Comparative study; Limited evaluations
پیش نمایش مقاله
پیش نمایش مقاله  کاشت جمعیت اولیه از الگوریتم های تکاملی چند هدفه: مطالعه محاسباتی

چکیده انگلیسی

Most experimental studies initialize the population of evolutionary algorithms with random genotypes. In practice, however, optimizers are typically seeded with good candidate solutions either previously known or created according to some problem-specific method. This seeding has been studied extensively for single-objective problems. For multi-objective problems, however, very little literature is available on the approaches to seeding and their individual benefits and disadvantages. In this article, we are trying to narrow this gap via a comprehensive computational study on common real-valued test functions. We investigate the effect of two seeding techniques for five algorithms on 48 optimization problems with 2, 3, 4, 6, and 8 objectives. We observe that some functions (e.g., DTLZ4 and the LZ family) benefit significantly from seeding, while others (e.g., WFG) profit less. The advantage of seeding also depends on the examined algorithm.