دانلود مقاله ISI انگلیسی شماره 78922
ترجمه فارسی عنوان مقاله

الگوریتم تکاملی چند عامل مبتنی بر دانش برای مشکل برنامه ریزی تست نهایی نیمه هادی

عنوان انگلیسی
A knowledge-based multi-agent evolutionary algorithm for semiconductor final testing scheduling problem
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78922 2015 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 84, August 2015, Pages 1–9

ترجمه کلمات کلیدی
مشکل برنامه ریزی تست نهایی نیمه هادی؛ چند عامل؛ الگوریتم تکاملی؛ متقابل یادگیری؛ رقابت؛ پایگاه دانش
کلمات کلیدی انگلیسی
Semiconductor final testing scheduling problem; Multi-agent; Evolutionary algorithm; Mutual-learning; Competition; Knowledge base
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تکاملی چند عامل مبتنی بر دانش برای مشکل برنامه ریزی تست نهایی نیمه هادی

چکیده انگلیسی

The final testing process ensures the quality of the products in the semiconductor manufacturing factory. Scheduling for the final testing process is crucial to the economic efficiency of production. In this paper, an effective knowledge-based multi-agent evolutionary algorithm (KMEA) is proposed for solving the semiconductor final testing scheduling problem (SFTSP). In the KMEA, each agent is represented by a solution, which is a combination of the operation sequence vector and the machine assignment vector. A hybrid initialization mechanism is proposed to balance the diversity and the quality of the initial agents. In each iteration of evolution, the agents evolve by mutual-learning and competition based on the model of agent lattice. Moreover, a knowledge base is employed to store the useful information during the search process. The knowledge base is used to generate new agents in the competition phase. The computational complexity of the KMEA is analyzed, and the influence of parameter setting is also investigated. Finally, numerical simulation and comparisons are provided to demonstrate the effectiveness and efficiency of the KMEA in solving the test instances.