دانلود مقاله ISI انگلیسی شماره 78930
ترجمه فارسی عنوان مقاله

افزایش الگوریتم تکاملی برای کنترل پیش بینی مدل و پشتیبانی تصمیم گیری زمان واقعی ☆

عنوان انگلیسی
Evolutionary algorithm enhancement for model predictive control and real-time decision support ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78930 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Environmental Modelling & Software, Volume 69, July 2015, Pages 330–341

ترجمه کلمات کلیدی
کنترل پیش بینی مدل؛ بهنگام؛ پشتیبانی تصمیم گیری؛ الگوریتم های ژنتیکی
کلمات کلیدی انگلیسی
Model predictive control; Real-time; Decision support; Genetic algorithms
پیش نمایش مقاله
پیش نمایش مقاله  افزایش الگوریتم تکاملی برای کنترل پیش بینی مدل و پشتیبانی تصمیم گیری زمان واقعی ☆

چکیده انگلیسی

Effective decision support and model predictive control of real-time environmental systems require that evolutionary algorithms operate more efficiently. A suite of model predictive control (MPC) genetic algorithms are developed and tested offline to explore their value for reducing combined sewer overflow (CSO) volumes during real-time use in a deep-tunnel sewer system. MPC approaches include the micro-GA, the probability-based compact GA, and domain-specific GA methods that reduce the number of decision variable values analyzed within the sewer hydraulic model, thus reducing algorithm search space. Minimum fitness and constraint values achieved by all GA approaches, as well as computational times required to reach the minimum values, are compared to large population sizes with long convergence times. Optimization results for a subset of the Chicago combined sewer system indicate that genetic algorithm variations with a coarse decision variable representation, eventually transitioning to the entire range of decision variable values, are best suited to address the CSO control problem. Although diversity-enhancing micro-GAs evaluate a larger search space and exhibit shorter convergence times, these representations do not reach minimum fitness and constraint values. The domain-specific GAs prove to be the most efficient for this case study. Further MPC algorithm developments are suggested to continue advancing computational performance of this important class of problems with dynamic strategies that evolve as the external constraint conditions change.