دانلود مقاله ISI انگلیسی شماره 78944
ترجمه فارسی عنوان مقاله

طیف سنجش تعاونی در شبکه رادیو شناختی با استفاده از الگوریتم های تکاملی چند هدفه و تصمیم گیری فازی

عنوان انگلیسی
Cooperative spectrum sensing in cognitive radio network using multiobjective evolutionary algorithms and fuzzy decision making
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78944 2013 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Ad Hoc Networks, Volume 11, Issue 3, May 2013, Pages 1022–1036

ترجمه کلمات کلیدی
رادیو شناختی؛ طیف سنجش تعاونی؛ الگوریتم تکاملی چند هدفه ؛ تصمیم گیری فازی
کلمات کلیدی انگلیسی
Cognitive radio; Cooperative spectrum sensing; Multiobjective evolutionary algorithm; Fuzzy decision making
پیش نمایش مقاله
پیش نمایش مقاله  طیف سنجش تعاونی در شبکه رادیو شناختی با استفاده از الگوریتم های تکاملی چند هدفه و تصمیم گیری فازی

چکیده انگلیسی

The cognitive radio has emerged as a potential solution to the problem of spectrum scarcity. Spectrum sensing unit in cognitive radio deals with the reliable detection of primary user’s signal. Cooperative spectrum sensing exploits the spatial diversity between cognitive radios to improve sensing accuracy. The selection of the weight assigned to each cognitive radio and the global decision threshold can be formulated as a constrained multiobjective optimization problem where probabilities of false alarm and detection are the two conflicting objectives. This paper uses evolutionary algorithms to solve this optimization problem in a multiobjective framework. The simulation results offered by different algorithms are assessed and compared using three performance metrics. This study shows that our approach which is based on the concept of cat swarm optimization outperforms other algorithms in terms of quality of nondominating solutions and efficient computation. A fuzzy logic based strategy is used to find out a compromise solution from the set of nondominated solutions. Different tests are carried out to assess the stability of the simulation results offered by the heuristic evolutionary algorithms. Finally the sensitivity analysis of different parameters is performed to demonstrate their impact on the overall performance of the system.