دانلود مقاله ISI انگلیسی شماره 79308
ترجمه فارسی عنوان مقاله

یک الگوریتم ابتکاری مبتنی بر مجموعه ی پوشش برای مشکل مسیریابی وسیله نقلیه تناوبی

عنوان انگلیسی
A set-covering based heuristic algorithm for the periodic vehicle routing problem
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79308 2014 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Discrete Applied Mathematics, Volume 163, Part 1, 30 January 2014, Pages 53–64

ترجمه کلمات کلیدی
مسیریابی وسیله نقلیه تناوبی؛ Matheuristics؛ نسل ستون
کلمات کلیدی انگلیسی
Periodic vehicle routing; Matheuristics; Column generation
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم ابتکاری مبتنی بر مجموعه ی پوشش برای مشکل مسیریابی وسیله نقلیه تناوبی

چکیده انگلیسی

We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems.