دانلود مقاله ISI انگلیسی شماره 79593
ترجمه فارسی عنوان مقاله

مقایسه الگوریتم های اکتشافی برای انتخاب آموزش سفارشی

عنوان انگلیسی
A comparison of heuristic algorithms for custom instruction selection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79593 2016 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Microprocessors and Microsystems, Volume 45, Part A, August 2016, Pages 176–186

ترجمه کلمات کلیدی
الگوریتم های اکتشافی؛ نمودار جریان داده ها؛ پردازنده های درب - دستورالعمل سفارشی - واحد تابع سفارشی
کلمات کلیدی انگلیسی
Heuristic algorithms; Data-flow graph; Extensible processors; Custom instructions; Custom function units
پیش نمایش مقاله
پیش نمایش مقاله  مقایسه الگوریتم های اکتشافی برای انتخاب آموزش سفارشی

چکیده انگلیسی

Extensible processors with custom function units (CFU) that implement parts of the application code can make good trade-off between performance and flexibility. In general, deciding profitable parts of the application source code that run on CFU involves two crucial steps: subgraph enumeration and subgraph selection. In this paper, we focus on the subgraph selection problem, which has been widely recognized as a computationally difficult problem. We have formally proved that the upper bound of the number of feasible solutions for the subgraph selection problem is 3n/3, where n is the number of subgraph candidates. We have adapted and compared five popular heuristic algorithms: simulated annealing (SA), tabu search (TS), genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO), for the subgraph selection problem with the objective of minimising execution time under non-overlapping constraint and acyclicity constraint. The results show that the standard SA algorithm can produce the best results while taking the least amount of time among the five standard heuristics. In addition, we have introduced an adaptive local optimum searching strategy in ACO and PSO to further improve the quality of results.