دانلود مقاله ISI انگلیسی شماره 79644
ترجمه فارسی عنوان مقاله

تنظیم پارامتر با سیستم رتبه شطرنج (CRS-تنظیم) برای الگوریتم های فوق ابتکاری

عنوان انگلیسی
Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79644 2016 24 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 372, 1 December 2016, Pages 446–469

ترجمه کلمات کلیدی
تنظیمات پارامتر؛ روش تنظیم - F-نژاد؛ Revac؛ سیستم امتیاز شطرنج برای الگوریتم های تکاملی
کلمات کلیدی انگلیسی
Parameter settings; Tuning methods; F-Race; Revac; Chess rating system for evolutionary algorithms
پیش نمایش مقاله
پیش نمایش مقاله  تنظیم پارامتر با سیستم رتبه شطرنج (CRS-تنظیم) برای الگوریتم های فوق ابتکاری

چکیده انگلیسی

Meta-heuristic algorithms should be compared using the best parameter values for all the involved algorithms. However, this is often unrealised despite the existence of several parameter tuning approaches. In order to further popularise tuning, this paper introduces a new tuning method CRS-Tuning that is based on meta-evolution and our novel method for comparing and ranking evolutionary algorithms Chess Rating System for Evolutionary Algorithms (CRS4EAs). The utility or performance a parameter configuration achieves in comparison with other configurations is based on its rating, rating deviation, and rating interval. During each iteration significantly worse configurations are removed and new configurations are formed through crossover and mutation. The proposed tuning method was empirically compared to two well-known tuning methods F-Race and Revac through extensive experimentation where the parameters of Artifical Bee Colony, Differential Evolution, and Gravitational Search Algorithm were tuned. Each of the presented methods has its own features as well as advantages and disadvantages. The configurations found by CRS-Tuning were comparable to those found by F-Race and Revac, and although they were not always significantly different regarding the null-hypothesis statistical testing, CRS-Tuning displayed many useful advantages. When configurations are similar in performance, it tunes parameters faster than F-Race and there are no limitations in tuning categorical parameters.