دانلود مقاله ISI انگلیسی شماره 81278
ترجمه فارسی عنوان مقاله

طبقه بندی خودکار اختلالات گفتاری در گفتار پیوسته بر اساس اقدامات تشابه و ابزار پردازش تصویر مورفولوژیکی

عنوان انگلیسی
Automatic classification of speech dysfluencies in continuous speech based on similarity measures and morphological image processing tools
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
81278 2016 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Biomedical Signal Processing and Control, Volume 23, January 2016, Pages 104–114

ترجمه کلمات کلیدی
طبقه بندی خودکار فریبندگی، اقدامات مشابهی، پردازش تصویر مورفولوژیکی، اندازه گیری شدت لکنت
کلمات کلیدی انگلیسی
Automatic dysfluency classification; Similarity measures; Morphological image processing; Stuttering severity measurement

چکیده انگلیسی

Speech-language pathologists, traditionally, count the number of speech dysfluencies to measure the rate of stuttering severity. Subjective stuttering assessment is time consuming and highly dependent on clinician's experiences. The present study proposes an objective evaluation of speech dysfluencies (sounds prolongation, syllables\words\phrases repetition) in continuous speech signals. The proposed method is based on finding similarity in successive frames of speech features for sounds prolongation detection and in close segments of speech for repetition detection. Speech signals are initially parameterized to MFCC, PLP or filter bank energy feature sets. Then, similarity matrix is calculated based on similarities of all pairs of frames using cross-correlation or Euclidean criterion. Similarity matrix is considered as an image and highly similar components are extracted using proper threshold. By employing morphological image processing tools, irrelevant parts of similarity matrix are removed and dysfluent parts are detected. The effects of different feature sets and similarity measures on classification results were examined. The promising classification accuracy of 99.84%, 98.07% and 99.87% were achieved for detection of prolongation, syllable/word repetition and phrase repetition, respectively.