دانلود مقاله ISI انگلیسی شماره 81529
ترجمه فارسی عنوان مقاله

بازسازی سیگنال پراکنده از طریق برنامه ریزی خطی تکهای مستمر مقعر☆

عنوان انگلیسی
Sparse signal reconstruction via concave continuous piecewise linear programming ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
81529 2016 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Digital Signal Processing, Volume 54, July 2016, Pages 12–26

ترجمه کلمات کلیدی
سنجش فشرده - برنامه ریزی خطی تکهای مداوم؛ بهینه سازی جهانی؛ برش معتبر γ
کلمات کلیدی انگلیسی
Compressed sensing; Continuous piecewise linear programming; Global optimization; γ valid cut

چکیده انگلیسی

Compressed sensing (CS) is a new paradigm for acquiring sparse and compressible signals which can be approximated using much less information than their nominal dimension would suggest. In order to recover a signal from its compressive measurements, the conventional CS theory seeks the sparsest signal that agrees with the measurements via a great many algorithms, which usually solve merely an approximation of the l0l0 norm minimization. In this paper, CS has been considered from a new perspective. We equivalently transform the l0l0 norm minimization into a concave continuous piecewise linear programming based on the prior knowledge of sparsity, and propose a novel global optimization algorithm for it based on a sophisticated detour strategy and the γ valid cut theory. Numerical experiments demonstrate that our algorithm improves the best known number of measurements in the literature, relaxes the restrictions of the sensing matrix to some extent, and performs robustly in the noisy scenarios.