دانلود مقاله ISI انگلیسی شماره 81530
ترجمه فارسی عنوان مقاله

برنامه ریزی خطی تقریبی کارآمد برای MDPs عامل

عنوان انگلیسی
Efficient approximate linear programming for factored MDPs
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
81530 2015 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 63, August 2015, Pages 101–121

ترجمه کلمات کلیدی
MDPs عامل؛ برنامه ریزی خطی تقریبی؛ نمودار اتصال؛ محدودیت های خوشه
کلمات کلیدی انگلیسی
Factored MDPs; Approximate linear programming; Junction graph; Cluster constraints

چکیده انگلیسی

Factored Markov Decision Processes (MDPs) provide a compact representation for modeling sequential decision making problems with many variables. Approximate linear programming (LP) is a prominent method for solving factored MDPs. However, it cannot be applied to models with large treewidth due to the exponential number of constraints. This paper proposes a novel and efficient approximate method to represent the exponentially many constraints. We construct an augmented junction graph from the factored MDP, and represent the constraints using a set of cluster constraints and separator constraints, where the cluster constraints play the role of reducing the number of constraints, and the separator constraints enforce the consistency of neighboring clusters so as to improve the accuracy. In the case where the junction graph is tree-structured, our method provides an equivalent representation to the original constraints. In other cases, our method provides a good trade-off between computation and accuracy. Experimental results on different models show that our algorithm performs better than other approximate linear programming algorithms on computational cost or expected reward.