دانلود مقاله ISI انگلیسی شماره 81540
ترجمه فارسی عنوان مقاله

حداکثر و تحرک فوق العاده در برنامه نویسی خطی چند منظوره

عنوان انگلیسی
Maximal and supremal tolerances in multiobjective linear programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
81540 2013 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 228, Issue 1, 1 July 2013, Pages 93–101

ترجمه کلمات کلیدی
برنامه ریزی خطی چند منظوره، راه حل کارآمد، تجزیه و تحلیل میزان حساسیت، تحمل تحمل
کلمات کلیدی انگلیسی
Multiobjective linear programming; Efficient solution; Sensitivity analysis; Tolerance analysis

چکیده انگلیسی

Let a multiobjective linear programming problem and any efficient solution be given. Tolerance analysis aims to compute interval tolerances for (possibly all) objective function coefficients such that the efficient solution remains efficient for any perturbation of the coefficients within the computed intervals. The known methods either yield tolerances that are not the maximal possible ones, or they consider perturbations of weights of the weighted sum scalarization only. We focus directly on perturbations of the objective function coefficients, which makes the approach independent on a scalarization technique used. In this paper, we propose a method for calculating the supremal tolerance (the maximal one need not exist). The main disadvantage of the method is the exponential running time in the worst case. Nevertheless, we show that the problem of determining the maximal/supremal tolerance is NP-hard, so an efficient (polynomial time) procedure is not likely to exist. We illustrate our approach on examples and present an application in transportation problems. Since the maximal tolerance may be small, we extend the notion to individual lower and upper tolerances for each objective function coefficient. An algorithm for computing maximal individual tolerances is proposed.