دانلود مقاله ISI انگلیسی شماره 121556
ترجمه فارسی عنوان مقاله

یادگیری چند هسته ای چند هسته ای برای شناسایی دقیق کودکان سندرم تورات

عنوان انگلیسی
Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
121556 2017 26 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 63, March 2017, Pages 601-611

پیش نمایش مقاله
پیش نمایش مقاله  یادگیری چند هسته ای چند هسته ای برای شناسایی دقیق کودکان سندرم تورات

چکیده انگلیسی

Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. To date, TS diagnosis remains somewhat limited and studies using advanced diagnostic methods are of great importance. In this paper, we introduce an automatic classification framework for accurate identification of TS children based on multi-modal and multi-type features, which is robust and easy to implement. We present in detail the feature extraction, feature selection, and classifier training methods. In addition, in order to exploit complementary information revealed by different feature modalities, we integrate multi-modal image features using multiple kernel learning (MKL). The performance of our framework has been validated in classifying 44 TS children and 48 age- and gender-matched healthy children. When combining features using MKL, the classification accuracy reached 94.24% using nested cross-validation. Most discriminative brain regions were mostly located in the cortico-basal ganglia, frontal cortico-cortical circuits, which are thought to be highly related to TS pathology. These results show that our method is reliable for early TS diagnosis, and promising for prognosis and treatment outcome.