دانلود مقاله ISI انگلیسی شماره 149337
ترجمه فارسی عنوان مقاله

پیش بینی قیمت های خانه با استفاده از روش پیمایش میانگین سازگاری: شواهد از چین

عنوان انگلیسی
Forecasting house prices using dynamic model averaging approach: Evidence from China
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
149337 2017 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Economic Modelling, Volume 61, February 2017, Pages 147-155

پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی قیمت های خانه با استفاده از روش پیمایش میانگین سازگاری: شواهد از چین

چکیده انگلیسی

Forecasting house price has been of great interests for macroeconomists, policy makers and investors in recent years. To improve the forecasting accuracy, this paper introduces a dynamic model averaging (DMA) method to forecast the growth rate of house prices in 30 major Chinese cities. The advantage of DMA is that this method allows both the sets of predictors (forecasting models) as well as their coefficients to change over time. Both recursive and rolling forecasting modes are applied to compare the performance of DMA with other traditional forecasting models. Furthermore, a model confidence set (MCS) test is used to statistically evaluate the forecasting efficiency of different models. The empirical results reveal that DMA generally outperforms other models, such as Bayesian model averaging (BMA), information-theoretic model averaging (ITMA) and equal-weighted averaging (EW), in both recursive and rolling forecasting modes. In addition, in recent years it is found that the Google search index, instead of fundamental macroeconomic or monetary indicators, has developed greater predictive power for house price in China.