دانلود مقاله ISI انگلیسی شماره 149375
ترجمه فارسی عنوان مقاله

طراحی و ساخت دیجیتال دموکراتیک با استفاده از پردازش ابر با کارایی بالا: ارزیابی عملکرد و معیار سنجش

عنوان انگلیسی
Democratizing digital design and manufacturing using high performance cloud computing: Performance evaluation and benchmarking
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
149375 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Manufacturing Systems, Volume 43, Part 2, April 2017, Pages 316-326

ترجمه کلمات کلیدی
طراحی و ساخت دیجیتال، پردازش ابری، محاسبات با کارایی بالا، سنجش عملکرد، معیار، تجزیه و تحلیل عنصر محدود،
کلمات کلیدی انگلیسی
Digital design and manufacturing; Cloud computing; High performance computing; Performance evaluation; Benchmark; Finite element analysis;
پیش نمایش مقاله
پیش نمایش مقاله  طراحی و ساخت دیجیتال دموکراتیک با استفاده از پردازش ابر با کارایی بالا: ارزیابی عملکرد و معیار سنجش

چکیده انگلیسی

Cloud computing is an innovative computing paradigm that can bridge the gap between increasing computing demands in computationally intensive tasks for digital design and manufacturing applications and limited resources, scalability, flexibility, and agility in traditional computing paradigms. In light of the benefits of cloud computing, cloud-based high performance computing (HPC) has the potential to enable users to not only accelerate computationally expensive tasks, but also to reduce costs by utilizing on-demand, ubiquitous, seamless, and user-friendly access to remote engineering application packages as well as remote HPC resources. However, due to uncertainty about computing performance on the cloud, many manufacturers find it challenging to justify and adopt Cloud-Based Design and Manufacturing (CBDM). Therefore, the objective of this research is to evaluate the performance of solving a large-scale engineering problem using finite element analysis on several public HPC clouds as well as introduce a new workflow for CBDM. A set of experiments is conducted to compare the performance of the public HPC clouds with that of a standard workstation and a dedicated in-house supercomputer. The performance metrics include elapsed time, speedup, scalability, and stability. Experimental results have shown that the Azure Cloud with 32 cores and the Nimbix Cloud with 16 nodes speed up the finite element analysis over a workstation with 8 cores by more than seven-fold and eight-fold. A dedicated in-house supercomputer speeds up the finite element analysis over cloud computing by approximately two-fold because of better I/O performance and larger memory. In addition, considerable variations of elapsed time for solving the finite element model with multiple nodes in the cloud were observed due to resource sharing in cloud computing.