دانلود مقاله ISI انگلیسی شماره 150120
ترجمه فارسی عنوان مقاله

الگوریتم تکاملی الگوریتم کوانتومی برای سفارش مشکلات

عنوان انگلیسی
Quantum inspired evolutionary algorithm for ordering problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150120 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 67, January 2017, Pages 71-83

ترجمه کلمات کلیدی
الگوریتم تکاملی الهام گرفته از کوانتومی، سفارش مشکل بهینه سازی، کمی کوانتومی مشکل مسیریابی خودرو
کلمات کلیدی انگلیسی
Quantum inspired evolutionary algorithm; Ordering optimization problem; Quantum bit; Vehicle routing problem;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تکاملی الگوریتم کوانتومی برای سفارش مشکلات

چکیده انگلیسی

This paper proposes a new quantum-inspired evolutionary algorithm for solving ordering problems. Quantum-inspired evolutionary algorithms based on binary and real representations have been previously developed to solve combinatorial and numerical optimization problems, providing better results than classical genetic algorithms with less computational effort. However, for ordering problems, order-based genetic algorithms are more suitable than those with binary and real representations. This is because specialized crossover and mutation processes are employed to always generate feasible solutions. Therefore, this work proposes a new quantum-inspired evolutionary algorithm especially devised for ordering problems (QIEA-O). Two versions of the algorithm have been proposed. The so-called pure version generates solutions by using the proposed procedure alone. The hybrid approach, on the other hand, combines the pure version with a traditional order-based genetic algorithm. The proposed quantum-inspired order-based evolutionary algorithms have been evaluated for two well-known benchmark applications – the traveling salesman problem (TSP) and the vehicle routing problem (VRP) – as well as in a real problem of line scheduling. Numerical results were obtained for ten cases (7 VRP and 3 TSP) with sizes ranging from 33 to 101 stops and 1 to 10 vehicles, where the proposed quantum-inspired order-based genetic algorithm has outperformed a traditional order-based genetic algorithm in most experiments.