دانلود مقاله ISI انگلیسی شماره 150229
ترجمه فارسی عنوان مقاله

الگوریتم تکاملی هیبرید برای برنامه ریزی کار و تخصیص داده ها از جریان های اطلاعات علمی در ابرها

عنوان انگلیسی
A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150229 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 76, November 2017, Pages 1-17

ترجمه کلمات کلیدی
ابرها، بهینه سازی ترکیبی، برنامه ریزی وظیفه تخصیص داده ها، الگوریتم تکاملی ترکیبی،
کلمات کلیدی انگلیسی
Clouds; Combinatorial optimization; Task scheduling; Data assignment; Hybrid evolutionary algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم تکاملی هیبرید برای برنامه ریزی کار و تخصیص داده ها از جریان های اطلاعات علمی در ابرها

چکیده انگلیسی

A growing number of data- and compute-intensive experiments have been modeled as scientific workflows in the last decade. Meanwhile, clouds have emerged as a prominent environment to execute this type of workflows. In this scenario, the investigation of workflow scheduling strategies, aiming at reducing its execution times, became a top priority and a very popular research field. However, few work consider the problem of data file assignment when solving the task scheduling problem. Usually, a workflow is represented by a graph where nodes represent tasks and the scheduling problem consists in allocating tasks to machines to be executed at a predefined time aiming at reducing the makespan of the whole workflow. In this article, we show that the scheduling of scientific workflows can be improved when both task scheduling and the data file assignment problems are treated together. Thus, we propose a new workflow representation, where nodes of the workflow graph represent either tasks or data files, and define the Task Scheduling and Data Assignment Problem (TaSDAP), considering this new model. We formulated this problem as an integer programming problem. Moreover, a hybrid evolutionary algorithm for solving it, named HEA-TaSDAP, is also introduced. To evaluate our approach we conducted two types of experiments: theoretical and practical ones. At first, we compared HEA-TaSDAP with the solutions produced by the mathematical formulation and by other works from related literature. Then, we considered real executions in Amazon EC2 cloud using a real scientific workflow use case (SciPhy for phylogenetic analyses). In all experiments, HEA-TaSDAP outperformed the other classical approaches from the related literature, such as Min–Min and HEFT.