دانلود مقاله ISI انگلیسی شماره 150322
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی مبتنی بر درخت تقریبی سریع

عنوان انگلیسی
Fast approximate minimum spanning tree based clustering algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150322 2018 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 272, 10 January 2018, Pages 542-557

ترجمه کلمات کلیدی
خوشه بندی حداقل درخت درختی نمودار محله محلی
کلمات کلیدی انگلیسی
Clustering; Minimum spanning tree; Local neighborhood graph;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی مبتنی بر درخت تقریبی سریع

چکیده انگلیسی

Minimum Spanning Tree (MST) based clustering algorithms have been employed successfully to detect clusters of heterogeneous nature. Given a dataset of n random points, most of the MST-based clustering algorithms first generate a complete graph G of the dataset and then construct MST from G. The first step of the algorithm is the major bottleneck which takes O(n2) time. This paper proposes an algorithm namely MST-based clustering on partition-based nearest neighbor graph for reducing the computational overhead. By using a centroid based nearest neighbor rule, the proposed algorithm first generates a sparse Local Neighborhood Graph (LNG) and then the approximate MST is constructed from LNG. We prove that both size and computational time to construct the graph (LNG) is O(n3/2), which is a O(n) factor improvement over the traditional algorithms. The approximate MST is constructed from LNG in O(n3/2lgn) time, which is asymptotically faster than O(n2). Experimental analysis on both synthetic and real datasets demonstrates that the computational time has been reduced significantly by maintaining the quality of clusters obtained from the approximate MST.