دانلود مقاله ISI انگلیسی شماره 150459
ترجمه فارسی عنوان مقاله

یک الگوریتم سریع برای خوشه بندی مجازات نشده

عنوان انگلیسی
A fast algorithm for nonsmooth penalized clustering
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150459 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 273, 17 January 2018, Pages 583-592

پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم سریع برای خوشه بندی مجازات نشده

چکیده انگلیسی

As a novel framework of clustering analysis, penalized clustering is able to learn the number of clusters automatically, and therefore has aroused widespread interest recently. To address the computational difficulties arising from the nonsmoothness of the penalty, a simple iterative algorithm based on smoothing trust region (STR) can be used. However, since STR only needs first-order information of the model, it might exhibit slow convergence rate sometimes. To accelerate STR and further improve the efficiency of penalized clustering, we propose a nonmonotone smoothing trust region (NSTR) algorithm, in which nonmonotone technique and the Barzilai and Borwein (BB) method are utilized together. We also prove that the new algorithm is globally convergent and estimate its worst case computational complexity. Experimental results on both simulated and real-life data sets validate the effectiveness and efficiency of the proposed method.