دانلود مقاله ISI انگلیسی شماره 150697
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی مبتنی بر هسته تراکم با شعاع پویایی اسکن

عنوان انگلیسی
Density core-based clustering algorithm with dynamic scanning radius
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150697 2018 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 142, 15 February 2018, Pages 58-70

ترجمه کلمات کلیدی
خوشه بندی هسته تراکم، شعاع اسکن پویا، همسایه طبیعی،
کلمات کلیدی انگلیسی
Clustering; Density core; Dynamic scanning radius; Natural neighbor;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی مبتنی بر هسته تراکم با شعاع پویایی اسکن

چکیده انگلیسی

Clustering analysis has been widely used in many fields such as image segmentation, pattern recognition, data analysis, market researches and so on. However, the distribution patterns of clusters are natural and complex in many research areas. In other words, most real data sets are non-spherical or non-elliptical clusters. For example, face images and hand-writing digital images are distributed in manifolds and some biological data sets are distributed in hyper-rectangles. Therefore, it is a great challenge to detect clusters of arbitrary shapes in multi-density datasets. Most of previous clustering algorithms cannot be applied to complex patterns with large variations in density because they only find hyper-elliptical and hyper-spherical clusters through centroid-based clustering approaches or fixed global parameters. This paper presents DCNaN, a clustering algorithm based on the density core and the natural neighbor to recognize complex patterns with large variations in density. Density cores can roughly retain the shape of clusters and natural neighbors are introduced to find dynamic scanning radiuses rather than fixed global parameters. The results of our experiments show that compared to state-of-the-art clustering techniques, our algorithm achieves better clustering quality, accuracy and efficiency, especially in recognizing extremely complex patterns with large variations in density.