دانلود مقاله ISI انگلیسی شماره 150702
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی برای تعیین ساختار جامعه در شبکه های پیچیده

عنوان انگلیسی
A clustering algorithm for determining community structure in complex networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150702 2018 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 492, 15 February 2018, Pages 980-993

ترجمه کلمات کلیدی
تشخیص جامعه، خوشه بندی مبتنی بر تراکم، تجزیه طیفی، برآورد پارامتر،
کلمات کلیدی انگلیسی
Community detection; Density based clustering; Spectral analysis; Parameter estimation;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی برای تعیین ساختار جامعه در شبکه های پیچیده

چکیده انگلیسی

Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather–Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.