دانلود مقاله ISI انگلیسی شماره 150767
ترجمه فارسی عنوان مقاله

الگوریتم خوشه بندی مبتنی بر فاصله و چگالی با استفاده از هسته گاوس

عنوان انگلیسی
Distance and density based clustering algorithm using Gaussian kernel
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150767 2017 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 69, 1 March 2017, Pages 10-20

ترجمه کلمات کلیدی
گاوسی، خوشه بندی مبتنی بر تراکم، خوشه بندی مبتنی بر توزیع، خوشه بندی مبتنی بر فاصله، داده کاوی،
کلمات کلیدی انگلیسی
Gaussian; Density-based clustering; Distribution-based clustering; Distance-based clustering; Data mining;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم خوشه بندی مبتنی بر فاصله و چگالی با استفاده از هسته گاوس

چکیده انگلیسی

Clustering is an important field for making data meaningful at various applications such as processing satellite images, extracting information from financial data or even processing data in social sciences. This paper presents a new clustering approach called Gaussian Density Distance (GDD) clustering algorithm based on distance and density properties of sample space. The novel part of the method is to find best possible clusters without any prior information and parameters. Another novel part of the algorithm is that it forms clusters very close to human clustering perception when executed on two dimensional data. GDD has some similarities with today’s most popular clustering algorithms; however, it uses both Gaussian kernel and distances to form clusters according to data density and shape. Since GDD does not require any special parameters prior to run, resulting clusters do not change at different runs. During the study, an experimental framework is designed for analysis of the proposed clustering algorithm and its evaluation, based on clustering performance for some characteristic data sets. The algorithm is extensively tested using several synthetic data sets and some of the selected results are presented in the paper. Comparative study outcomes produced by other well-known clustering algorithms are also discussed in the paper.